CONTRIBUTION OF THE Ce³⁺ ON THE Gd³⁺ \rightarrow Eu²⁺ ENERGY TRANSFER IN RbY₃F₁₀

J. Metin, M. El-Fettah, R. Mahiou and J. C. Cousseins

Laboratoire de Chimie des Solides (URA 444), Université Blaise Pascal (Clermont-Ferrand) et ENSCCF, 63177 Aubière Cédex (France)

When located at alcaline site in RbY_3F_{10} , the Eu^{2+} ion gives a ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ (4f⁷ + 4f⁷) fluorescence line whose maximum intensity is obtained for a concentration of 3 % (Eu^{2+}).

The optimization of this fluorescence in view of the realization of a solid U.V. laser has led us to study the fluorescence of $Rb(Gd,Ce,Y)_{3}F_{10}$: Eu^{2+} at 300 and 77 K. When the material is codoped with Ce^{3+} (c < 3 %) and Eu^{2+} , a $Ce^{3+} \rightarrow Eu^{2+}$ very slight transfer can be observed together with an increasing absorption of the Eu^{2+} ion in the 280-310 nm range (Ce^{3+} excitation band). When Gd^{3+} ion takes the place of Y^{3+} , the transfer is assisted and the maximum fluorescence of the Eu^{2+} ion is obtained for $RbGd_{2.94}Ce_{0.06}F_{10}$: Eu^{2+} (3 %) upon excitation of Ce^{3+} at 295 nm at both 77 and 300 K.

So we have evidenced for the first time a $\operatorname{Ce}^{3^+} \leftrightarrow \operatorname{Gd}^{3^+} \neq \operatorname{Eu}^{2^+}$ transfer.